Document Type
Article
Publication Date
2015
Publication Title
Environmental Science and Technology
Volume
49
First Page
12832
Keywords
Persistent Organic Pollutants as Chemical Tracers, Energy and Nutrient Flow, Food webs, Lake Huron, Lake Trout
Last Page
12839
Abstract
Measuring in situ nutrient and energy flows in spatially and temporally complex aquatic ecosystems represents a major ecological challenge. Food web structure, energy and nutrient budgets are difficult to measure, and it is becoming more important to quantify both energy and nutrient flow to determine how food web processes and structure are being modified by multiple stressors. We propose that polychlorinated biphenyl (PCB) congeners represent an ideal tracer to quantify in situ energy and nutrient flow between trophic levels. Here, we demonstrate how an understanding of PCB congener bioaccumulation dynamics provides multiple direct measurements of energy and nutrient flow in aquatic food webs. To demonstrate this novel approach, we quantified nitrogen (N), phosphorus (P) and caloric turnover rates for Lake Huron lake trout, and reveal how these processes are regulated by both growth rate and fish life history. Although minimal nutrient recycling was observed in young growing fish, slow growing, older lake trout (> 5 yr) recycled an average of 482 Tonnes∙yr-1of N, 45 Tonnes∙yr-1of P and assimilated 22 TJ yr-1of energy. Compared to total P loading rates of 590 Tonnes∙yr-1, the recycling of primarily bio available nutrients by fish plays an important role regulating the nutrient states of oligotrophic lakes.
DOI
10.1021/acs.est.5b03978
Recommended Citation
McLeod, Anne M.; Paterson, Gord; Drouillard, Ken G.; and Haffner, Douglas G.. (2015). PCB Food web dynamics quantify nutrient and energy flow in aquatic ecosystems. Environmental Science and Technology, 49, 12832-12839.
https://scholar.uwindsor.ca/glierpub/15
Included in
Biochemistry, Biophysics, and Structural Biology Commons, Physical Sciences and Mathematics Commons