Document Type
Article
Publication Date
2010
Publication Title
Heredity
Volume
104
Issue
2
First Page
224
Last Page
234
Abstract
Understanding how organisms function at the level of gene expression is becoming increasingly important for both ecological and evolutionary studies. It is evident that the diversity and complexity of organisms are not dependent solely on their number of genes, but also the variability in gene expression and gene interactions. Furthermore, slight differences in transcription control can fundamentally affect the fitness of the organism in a variable environment or during development. In this study, triploid and diploid Chinook salmon (Oncorhynchus tshawytscha) were used to examine the effects of polyploidy on specific and genome-wide gene expression response using quantitative real-time PCR (qRT-PCR) and microarray technology after an immune challenge with the pathogen Vibrio anguillarum. Although triploid and diploid fish had significant differences in mortality, qRT-PCR revealed no differences in cytokine gene expression response (interleukin-8, interleukin-1, interleukin-8 receptor and tumor necrosis factor), whereas differences were observed in constitutively expressed genes, (immunoglobulin (Ig) M, major histocompatibility complex (MHC) -II and beta-actin) upon live Vibrio anguillarum exposure. Genome-wide microarray analysis revealed that, overall, triploid gene expression is similar to diploids, consistent with their similar phenotypes. This pattern, however, can subtly be altered under stress (for example, handling, V. anguillarum challenge) as we have observed at some housekeeping genes. Our results are the first report of dosage effect on gene transcription in a vertebrate, and they support the observation that diploid and triploid salmon are generally phenotypically indistinguishable, except under stress, when triploids show reduced performance.
DOI
10.1038/hdy.2009.108
Recommended Citation
Ching, B.; Jamieson, Sara; Heath, J. W.; Heath, Daniel D.; and Hubberstey, Andrew V.. (2010). Transcriptional differences between triploid and diploid Chinook salmon (Oncorhynchus tshawytscha) during live Vibrio anguillarum challenge. Heredity, 104 (2), 224-234.
https://scholar.uwindsor.ca/glierpub/47
Included in
Biochemistry, Biophysics, and Structural Biology Commons, Biodiversity Commons, Biology Commons, Marine Biology Commons
Comments
Provided by the Springer Nature SharedIt content-sharing initiative