Author ORCID Identifier
0000-0001-8235-6411 : Oliver Love
Document Type
Article
Publication Date
7-1-2021
Publication Title
Journal of Experimental Biology
Volume
224
Issue
13
Keywords
Arctic climate change, Evaporative cooling efficiency, Evaporative water loss, Heat stress, Seabirds, Thick-billed murres
Abstract
The Arctic is warming at approximately twice the global rate, with welldocumented indirect effects on wildlife. However, few studies have examined the direct effects of warming temperatures on Arctic wildlife, leaving the importance of heat stress unclear. Here, we assessed the direct effects of increasing air temperatures on the physiology of thick-billed murres (Uria lomvia), an Arctic seabird with reported mortalities due to heat stress while nesting on sun-exposed cliffs.We used flow-through respirometry to measure the response of body temperature, resting metabolic rate, evaporative water loss and evaporative cooling efficiency (the ratio of evaporative heat loss to metabolic heat production) in murres while experimentally increasing air temperature. Murres had limited heat tolerance, exhibiting: (1) a low maximum body temperature (43.3°C); (2) a moderate increase in resting metabolic rate relative that within their thermoneutral zone (1.57 times); (3) a small increase in evaporative water loss rate relative that within their thermoneutral zone (1.26 times); and (4) a low maximum evaporative cooling efficiency (0.33). Moreover, evaporative cooling efficiency decreased with increasing air temperature, suggesting murres were producing heat at a faster rate than they were dissipating it. Larger murres also had a higher rate of increase in resting metabolic rate and a lower rate of increase in evaporative water loss than smaller murres; therefore, evaporative cooling efficiency declined with increasing body mass. As a coldadapted bird, murres' limited heat tolerance likely explains their mortality on warm days. Direct effects of overheating on Arctic wildlife may be an important but under-reported impact of climate change.
DOI
10.1242/jeb.242168
ISSN
00220949
E-ISSN
14779145
Recommended Citation
Choy, Emily S.; O'Connor, Ryan S.; Gilchrist, H. Grant; Hargreaves, Anna L.; Love, Oliver P.; Vézina, François; and Elliott, Kyle H.. (2021). Limited heat tolerance in a cold-adapted seabird: Implications of a warming Arctic. Journal of Experimental Biology, 224 (13).
https://scholar.uwindsor.ca/glierpub/483
PubMed ID
34232314
Included in
Biochemistry, Biophysics, and Structural Biology Commons, Biodiversity Commons, Biology Commons, Marine Biology Commons