Author ORCID Identifier
0000-0001-8235-6411 : Oliver Love
Document Type
Article
Publication Date
2-1-2021
Publication Title
Ecology and Evolution
Volume
11
Issue
4
First Page
1609
Keywords
Arctic climate change, evaporative cooling efficiency, evaporative water loss, heat dissipation, snow bunting, thermal physiology, thermoregulatory polygon
Last Page
1619
Abstract
Arctic animals inhabit some of the coldest environments on the planet and have evolved physiological mechanisms for minimizing heat loss under extreme cold. However, the Arctic is warming faster than the global average and how well Arctic animals tolerate even moderately high air temperatures (Ta) is unknown. Using flow-through respirometry, we investigated the heat tolerance and evaporative cooling capacity of snow buntings (Plectrophenax nivalis; ≈31 g, N = 42), a cold specialist, Arctic songbird. We exposed buntings to increasing Ta and measured body temperature (Tb), resting metabolic rate (RMR), rates of evaporative water loss (EWL), and evaporative cooling efficiency (the ratio of evaporative heat loss to metabolic heat production). Buntings had an average (±SD) Tb of 41.3 ± 0.2°C at thermoneutral Ta and increased Tb to a maximum of 43.5 ± 0.3°C. Buntings started panting at Ta of 33.2 ± 1.7°C, with rapid increases in EWL starting at Ta = 34.6°C, meaning they experienced heat stress when air temperatures were well below their body temperature. Maximum rates of EWL were only 2.9× baseline rates at thermoneutral Ta, a markedly lower increase than seen in more heat-tolerant arid-zone species (e.g., ≥4.7× baseline rates). Heat-stressed buntings also had low evaporative cooling efficiencies, with 95% of individuals unable to evaporatively dissipate an amount of heat equivalent to their own metabolic heat production. Our results suggest that buntings’ well-developed cold tolerance may come at the cost of reduced heat tolerance. As the Arctic warms, and this and other species experience increased periods of heat stress, a limited capacity for evaporative cooling may force birds to increasingly rely on behavioral thermoregulation, such as minimizing activity, at the expense of diminished performance or reproductive investment.
DOI
10.1002/ece3.7141
E-ISSN
20457758
Recommended Citation
O'Connor, Ryan S.; Le Pogam, Audrey; Young, Kevin G.; Robitaille, Francis; Choy, Emily S.; Love, Oliver P.; Elliott, Kyle H.; Hargreaves, Anna L.; Berteaux, Dominique; Tam, Andrew; and Vézina, François. (2021). Limited heat tolerance in an Arctic passerine: Thermoregulatory implications for cold-specialized birds in a rapidly warming world. Ecology and Evolution, 11 (4), 1609-1619.
https://scholar.uwindsor.ca/glierpub/488
Included in
Biochemistry, Biophysics, and Structural Biology Commons, Biodiversity Commons, Biology Commons, Marine Biology Commons