Document Type
Article
Publication Date
2-1-2014
Publication Title
FEMS Microbiology Ecology
Volume
87
Issue
2
First Page
475
Keywords
Bacterial production, Microbial diversity, Winter limnology
Last Page
485
Abstract
Carbon and nutrient cycles in large temperate lakes such as Lake Erie are primarily driven by phototrophic and heterotrophic microorganisms, although our understanding of these is often constrained to late spring through summer due to logistical constraints. During periods of > 90% ice cover in February of 2008, 2009, and 2010, we collected samples from an icebreaker for an examination of bacterial production as well as microbial community structure. In comparison with summer months (August 2002 and 2010), we tested hypotheses concerning seasonal changes in microbial community diversity and production. Bacterial production estimates were c. 2 orders of magnitude higher (volume normalized) in summer relative to winter. Our observations further demonstrate that the microbial community, including single-celled phototrophs, varied in composition between August and February. Sediment traps deployed and collected over a 3 year period (2008-2011) confirmed that carbon export was ongoing and not limiting winter production. The results support the notion that active primary producers in winter months export carbon to the sediments that is not consumed until the warmer seasons. The establishment of this linkage is a critical observation in efforts to understand the extent and severity of annual summertime formations of a zone of regional hypoxia in Lake Erie. Seasonal changes in microbial community productivity and diversity suggest primary production in winter months may exacerbate summer hypoxia in Lake Eri. © 2014 Federation of European Microbiological Societies.
DOI
10.1111/1574-6941.12238
ISSN
01686496
E-ISSN
15746941
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Recommended Citation
Wilhelm, Steven W.; Lecleir, Gary R.; Bullerjahn, George S.; Mckay, Robert M.; Saxton, Matthew A.; Twiss, Michael R.; and Bourbonniere, Richard A.. (2014). Seasonal changes in microbial community structure and activity imply winter production is linked to summer hypoxia in a large lake. FEMS Microbiology Ecology, 87 (2), 475-485.
https://scholar.uwindsor.ca/glierpub/574
PubMed ID
24164471
Included in
Biochemistry, Biophysics, and Structural Biology Commons, Biodiversity Commons, Biology Commons, Marine Biology Commons