Document Type

Article

Publication Title

Behavioral Ecology and Sociobiology

Publication Date

5-1-2020

Volume

74

Issue

5

Keywords

Communication, Katydids, Neotropics, Signal timing, Tremulations, Wind

DOI

10.1007/s00265-020-02842-z

ISSN

03405443

Abstract

Abstract: Wind, a major source of environmental noise, forces invertebrates that communicate with plant-borne vibrations to adjust their signaling when communicating in windy conditions. However, the strategies that animals use to reduce the impact of wind noise on communication are not well studied. We investigated the effects of wind on the production of tremulatory signals in the neotropical katydid Copiphora brevirostris. First, we recorded katydid signaling activity and natural wind variation in the field. Additionally, we exposed katydid couples during their most active signaling time period to artificial wind of different levels, and we recorded the number of tremulations produced by the males. We found that wind levels are at their lowest between 2:00 and 5:00 in the morning, which coincides with peak signaling period for male katydids. Furthermore, we found that males produce significantly fewer tremulations when exposed to wind rather than acoustic noise or silence. Wind velocity significantly affected the number of tremulations produced during the wind treatment, with fewer tremulations produced with higher wind velocities. Our results show that katydids can time their vibratory signaling both in the short- and long-term to favorable sensory conditions, either through behavioral flexibility in response to short-term fluctuations in wind or as a result of an evolutionary process in response to predictable periods of low-wind conditions. Significance statement: Animal communication can be hampered by noise across all sensory modalities. Most research on the effects of noise and the strategies to cope with it has focused on animals that use airborne sounds to communicate. However, although hundreds of thousands of invertebrates communicate with vibrational signals, we know very little about how noise affects this form of communication. For animals that rely on substrate-borne vibrations, wind represents the major source of environmental noise. Wind velocity levels can be predictable at a long-term scale (hours) but rather unpredictable at a short time scale (seconds). Both scales of variation are important for communication. Using a combination of field observations and lab experiments, we investigated the strategies used by a neotropical katydid Copiphora brevirostris to cope with vibrational noise induced by wind. Our results demonstrate that C. brevirostris times its signals at the long- and short-term range. Katydids signaled more at the times at night when wind velocity was lowest. Moreover, when exposed to wind gusts during their peak time of activity, katydids signaled more during the wind-free gaps.

E-ISSN

14320762

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Share

COinS