Flexible response to short-term weather in a cold-adapted songbird

Document Type

Article

Publication Title

Journal of Avian Biology

Publication Date

2-1-2019

Volume

50

Issue

2

Keywords

avian energetics, snow bunting, winter acclimatization

DOI

10.1111/jav.01766

ISSN

09088857

Abstract

To improve survival during winter, temperate species use a variety of behavioural and physiological adaptations. Among songbirds, the maintenance of lipid reserves is a widely-used strategy to cope with the severity of winter; however, little is known regarding how multiple synchronously acting environmental mechanisms work together to drive these effects. In a context where temperate winter conditions are becoming more variable, it is important to widen our understanding regarding the flexible adaptations that may allow wintering species to adjust to projected climate change. Using a long-term dataset collected across multiple wintering populations (7 years; 8 locations), we analyzed the effects of daily variation in weather (e.g. temperature, snowfall) on the variation in energy reserves (i.e. fat stores) of wintering snow buntings Plectrophenax nivalis. Our results support the prediction that birds carry more reserves to increase the safety margin against starvation when conditions are energy-demanding and access to food is unpredictable (i.e. colder, snowier conditions). Birds responded to daily changes in weather by increasing their reserves as conditions deteriorated, with maximal temperatures and snow depth being the most important predictors of fattening decisions. We also found that females consistently exhibited higher fat reserves than males relative to their body size, suggesting that differential physiological adaptations among sexes or social dominance may play an additional role in explaining variation in energy reserves across individuals in this species. Overall, our findings increase knowledge on phenotypic adjustments used by species wintering in temperate zones to match variation in their environment.

E-ISSN

1600048X

Share

COinS