Title
Electric vehicle battery state changes and reverse logistics considerations
Document Type
Article
Publication Date
1-24-2021
Publication Title
International Journal of Sustainable Engineering
Keywords
Electric vehicles, lithium-ion batteries, reverse logistics, stochastic processes, absorbing Markov chain
Abstract
Electric Vehicles are becoming trendy and proved to have no harmful exhaust like traditional fuel-powered vehicles which makes them one of the best solutions to reduce greenhouse gas emissions. As the world shifts towards electric vehicle adoption, we will need efficient power sources to provide enough capacity for all these vehicles to function. Lithium-Ion batteries are the driving force behind this new trend. The goal of this research is to analyze the lifespan and long-term ratio composition of Lithium-Ion batteries in electric vehicles by developing two models, an Absorbing Markov Chain model, and a Markov Chain Steady-State Census model. A sensitivity analysis is also conducted to alleviate the scarcity of enough input data. This research work shows that the lifespan of batteries can be extended by 4.5 years, which will have a positive environmental impact and reap economic benefits. Moreover, the long-term composition of batteries in New, Remanufactured, Repurposed and Recycled states can be projected. The increasing demand for Electric Vehicles globally has created a necessity for more batteries to power them, and these batteries require materials to be made. By considering reverse logistics processes, it is possible to recycle batteries and recover the valuable materials. Not only does this support the environment but given the rising demand and finite raw material supply, there is an opportunity to capture the economic benefit of recycling. From this research, the recovered materials cobalt, lithium, and nickel are calculated, and this is especially important for the optimal planning of sustainable manufacturing.
DOI
10.1080/19397038.2020.1856968
Funding Reference Number
RGPIN-2020-05499
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Recommended Citation
Akram, Muhammad and Abdul-Kader, Walid. (2021). Electric vehicle battery state changes and reverse logistics considerations. International Journal of Sustainable Engineering.
https://scholar.uwindsor.ca/mechanicalengpub/21
Comments
This work was supported by the Natural Sciences and Engineering Research Council of Canada [RGPIN-2020-05499].