Title
Wake impacts on downstream wind turbine performance and yaw alignment
Document Type
Article
Publication Date
1-1-2013
Publication Title
Wind Energy
Volume
16
Issue
2
First Page
221
Keywords
active wake management, wake interaction, wind farm, wind sector management, wind turbine wake, yaw misalignment
Last Page
234
Abstract
Aerodynamic wake interaction between commercial scale wind turbines can be a significant source of power losses and increased fatigue loads across a wind farm. Significant research has been dedicated to the study of wind turbine wakes and wake model development. This paper profiles influential wake regions for an onshore wind farm using 6 months of recorded SCADA (supervisory control and data acquisition) data. An average wind velocity deficit of over 30% was observed corresponding to power coefficient losses of 0.2 in the wake region. Wind speed fluctuations are also quantified for an array of turbines, inferring an increase in turbulence within the wake region. A study of yaw data within the array showed turbine nacelle misalignment under a range of downstream wake angles, indicating a characteristic of wind turbine behaviour not generally considered in wake studies. The turbines yaw independently in order to capture the increased wind speeds present due to the lateral influx of turbulent wind, contrary to many experimental and simulation methods found in the literature. Improvements are suggested for wind farm control strategies that may improve farm-wide power output. Additionally, possible causes for wind farm wake model overestimation of wake losses are proposed. © 2012 John Wiley & Sons, Ltd. © 2012 John Wiley & Sons, Ltd.
DOI
10.1002/we.544
ISSN
10954244
E-ISSN
10991824
Recommended Citation
McKay, Phillip; Carriveau, Rupp; and Ting, David S.K.. (2013). Wake impacts on downstream wind turbine performance and yaw alignment. Wind Energy, 16 (2), 221-234.
https://scholar.uwindsor.ca/mechanicalengpub/218