Title
Advancing drag crisis of a sphere via the manipulation of integral length scale
Document Type
Article
Publication Date
1-1-2011
Publication Title
Wind and Structures, An International Journal
Volume
14
Issue
1
First Page
35
Keywords
Drag coefficient, Integral length scale, Orifice perforated plate, Sphere, Turbulence
Last Page
53
Abstract
Spherical object in wind is a common scenario in daily life and engineering practice. The main challenge in understanding the aerodynamics in turbulent wind lies in the multi-aspect of turbulence. This paper presents a wind tunnel study, which focuses on the role of turbulence integral length scale . on the drag of a sphere. Particular turbulent flow conditions were achieved via the proper combination of wind speed, orifice perforated plate, sphere diameter (D) and distance downstream from the plate. The drag was measured in turbulent flow with 2.2 × 104 ≤ Re ≤ 8 × 104, 0.043 ≤ ∧./D ≤ 3.24, and turbulence intensity Tu up to 6.3%. Our results confirmed the general trends of decreasing drag coefficient and critical Reynolds number with increasing turbulence intensity. More interestingly, the unique role of the relative integral length scale has been revealed. Over the range of conditions studied, an integral length of approximately 65% the sphere diameter is most effective in reducing the drag.
DOI
10.12989/was.2011.14.1.035
ISSN
12266116
Recommended Citation
Moradiana, Niloofar; Tingb, David S.K.; and Cheng, Shaohong. (2011). Advancing drag crisis of a sphere via the manipulation of integral length scale. Wind and Structures, An International Journal, 14 (1), 35-53.
https://scholar.uwindsor.ca/mechanicalengpub/232