Author ORCID Identifier

http://orcid.org/0000-0002-0919-6156 : David S-K Ting

Document Type

Article

Publication Date

10-3-2018

Publication Title

Wind Engineering for Natural Hazards: Modeling, Simulation, and Mitigation of Windstorm Impact on Critical Infrastructure

First Page

111

Last Page

132

Abstract

Cable-stayed bridges have become progressively popular since 1955, mainly because of their modest requirement on ground anchorage condition, efficient use of structural material, higher stiffness, and economy compared to suspension bridges. The inclined and/or yawed orientation of bridge stay cables results in the formation of secondary axial flow on the leeward side of cable surface, which is believed to be one of the contributing factors exciting some unique wind-induced cable vibration phenomena. To clarify the role of axial flow in triggering aerodynamic instability of stay cables, a numerical study has been conducted to indirectly examine the axial flow effect via a perforated splitter plate placed along the central line of a circular cylinder wake. Results show that the presence of a perforated wake splitter plate would play a similar role as the axial flow in affecting the strength of von Kármán vortex shedding. Reductions on the fluctuating amplitude of the instantaneous lift and drag, as well as the mean drag, are also observed, which would ultimately affect the aerodynamic response of the studied cylinder.

DOI

https://doi.org/10.1061/9780784415153.ch06

Share

COinS