Title

Urban water supply systems’ resilience under earthquake scenario

Document Type

Article

Publication Date

12-1-2022

Publication Title

Scientific Reports

Volume

12

Issue

1

Abstract

Threats to water supply systems have increased in number and intensity. Natural disasters such as earthquakes have caused different types of damage to water distribution networks (WDN), particularly for those with aged infrastructure. This paper investigates the resilience of an existing water distribution network under seismic hazard. An earthquake generation model coupled with a probabilistic flow-based pressure driven demand hydraulic model is investigated and applied to an existing WDN. A total of 27 earthquake scenarios and 2 repair strategies were simulated. The analysis examined hydraulic resilience metrics such as pressure, leak demand, water serviceability, and population impacted. The results show that nodal pressure drops below nominal pressure and reaches zero in some earthquake scenarios. Leak demand could reach to more than 10 m3/s within hours following an earthquake. Water serviceability drops to a low of 40% and population impacted reaches up to 90% for a 6.5 M earthquake, for example. This study highlights and quantifies vulnerabilities within the simulated WDN. The tools outlined here illustrate an approach that can: (1) ultimately help to better inform utility water safety plans, and (2) prepare proactive strategies to mitigate/repair before a hazard of this nature occurs.

DOI

10.1038/s41598-022-23126-8

E-ISSN

20452322

PubMed ID

36446801

Share

COinS