Document Type
Article
Publication Date
2010
Publication Title
Journal of Applied Physics
Volume
107
Issue
9
First Page
094303-1
Last Page
094303-6
Abstract
We propose a sensing mechanism for detection of analytes that can specifically recognized. The sensor is based on closely-spaced chains of functionalized gold nanoparticles (NPs) immobilized on a waveguide surface, with the signal detected by evanescent waveguide absorption spectroscopy. The localized surface plasmon spectrum of a linear array of closely-spaced, hemispherical gold NPs is calculated using the discrete dipole approximation. The plasmon band is found to broaden to a nanowirelike spectrum when a dielectric coating is put on the particles, and the light polarization is along the NP chain. The origin of this broadening is shown to be the polarization-dependent overlap of the evanescent fields of adjacent NPs upon application of the dielectric coating. These features suggests a mechanism for biosensing with an improved sensitivity compared with traditional NP biosensor methods.
Recommended Citation
Rafsanjani, S.M.H.; Cheng, T.; Mittler, S.; and Rangan, Chitra. (2010). Theoretical proposal for a biosensing approach based on a linear array of immobilized gold nanoparticles. Journal of Applied Physics, 107 (9), 094303-1-094303-6.
https://scholar.uwindsor.ca/physicspub/1
Comments
This article was first published in the Journal of Applied Physics, Vol. 107 Iss. 9, 2010. Copyright (2012) American Physical Society (APS). It can be found here.