Keywords
CHP, exergy, Stirling engine, exergy destruction
Abstract
With the increasing demand for energy, it has become imperative to look for better and more efficient systems. Combined heat and power systems can provide the required power output while also utilizing the waste heat to increase the overall efficiency of the system. This study analyzed a 1 kW WhisperGen Combined Heat and Power system powered by a Stirling engine. A thermodynamic analysis of the engine was performed to understand the losses occurring within it. In addition, the WhisperGen engine was analyzed in terms of its exergy losses through an advanced exergy analysis on the different components of the engine. The first law efficiency of the engine was calculated to be around 67%. The exergy efficiency of the engine was 30%. The combustion chamber contributed nearly 84% of the total exergy destruction occurring in the engine. While on the other hand, the exhaust heat exchanger had the lowest exergy destruction making it the most efficient component with 45% exergy efficiency. The advanced exergy analysis provided insight into how much each component can be improved. The emphasis should be on improving the combustion chamber, since the avoidable exergy destruction in the chamber was more than 60%. Reducing the avoidable exergy destructions in the components would increase the exergy efficiency of the engine by at least 15%.
Primary Advisor
Dr. David Ting
Co-Advisor
Dr. Graham Reader
Program Reader
Dr. Nickolas Eaves
Degree Name
Master of Applied Science
Department
Mechanical, Automotive and Materials Engineering
Document Type
Major Research Paper
Convocation Year
2021