Application of discrete-basis-set methods to the Dirac equation
Document Type
Article
Publication Date
1981
Publication Title
Physical Review A
Volume
23
Issue
5
First Page
2093
Last Page
2098
Abstract
Variational solutions to the Dirac equation in a discrete L2 basis set are investigated. Numerical calculations indicate that for a Coulomb potential, the basis set can be chosen in such a way that the variational eigenvalues satisfy a generalized Hylleraas-Undheim theorem. A number of relativistic sum rules are calculated to demonstrate that the variational solutions form a discrete representation of the complete Dirac spectrum including both positive-and negative-energy states. The results suggest that widely used methods for constructing L2 representations of the nonrelativistic electron Green's function can be extended to the Dirac equation. As an example, the relativistic basis sets are used to calculate electric dipole oscillator strength sums from the ground state, and dipole polarizabilities. © 1981 The American Physical Society.
Recommended Citation
Drake, Gordon W. F. and Goldman, S. P.. (1981). Application of discrete-basis-set methods to the Dirac equation. Physical Review A, 23 (5), 2093-2098.
https://scholar.uwindsor.ca/physicspub/148
Comments
copyright American Physical Society http://dx.doi.org/10.1103/PhysRevA.23.2093