Document Type
Article
Publication Date
2010
Publication Title
BMC Microbiology
Volume
10
Abstract
Background. Sensing and responding to environmental changes is a central aspect of cell division regulation. Mycobacterium tuberculosis contains eleven Ser/Thr kinases, two of which, PknA and PknB, are key signaling molecules that regulate cell division/morphology. One substrate of these kinases is Wag31, and we previously showed that partial depletion of Wag31 caused morphological changes indicative of cell wall defects, and that the phosphorylation state of Wag31 affected cell growth in mycobacteria. In the present study, we further characterized the role of the Wag31 phosphorylation in polar peptidoglycan biosynthesis. Results. We demonstrate that the differential growth among cells expressing different wag31 alleles (wild-type, phosphoablative, or phosphomimetic) is caused by, at least in part, dissimilar nascent peptidoglycan biosynthesis. The phosphorylation state of Wag31 is found to be important for protein-protein interactions between the Wag31 molecules, and thus, for its polar localization. Consistent with these results, cells expressing a phosphomimetic wag31 allele have a higher enzymatic activity in the peptidoglycan biosynthetic pathway. Conclusions. The Wag31 Mtbphosphorylation is a novel molecular mechanism by which Wag31 Mtbregulates peptidoglycan synthesis and thus, optimal growth in mycobacteria. © 2010 Jani et al; licensee BioMed Central Ltd.
Recommended Citation
Jani, C.; Eoh, H.; Lee, J.J.; and Hamasha, K.. (2010). Regulation of polar peptidoglycan biosynthesis by Wag31 phosphorylation in mycobacteria. BMC Microbiology, 10.
https://scholar.uwindsor.ca/physicspub/28
Comments
This article was first published in BMC Microbiology. Copyright 2010 BioMed Central. It can be found here: http://www.biomedcentral.com/1471-2180/10/327.