Standing

Undergraduate

Type of Proposal

Oral Research Presentation

Faculty

Faculty of Science

Faculty Sponsor

Lisa A. Porter

Proposal

The cell cycle contains DNA damage checkpoints that delay mitotic progression and allow for DNA repair before cell division. DNA damage can be caused by radiation, drugs, and other processes which lead to cellular mutations and carcinogenesis. The tumour suppressor protein p53 is activated in the presence of DNA damage. It induces apoptosis or cell cycle arrest which allows cells to repair themselves. Tuberin (TSC2), another tumour suppressor protein, regulates the G2/M transition in the cell cycle and negatively regulates protein synthesis and cell growth. Mutations in tuberin can lead to the multisystem autosomal dominant disease known as tuberous sclerosis (TSC).

Previously, our lab has shown that Tuberin regulates mitotic onset through cellular localization of the G2/M Cyclin, Cyclin B1. My project focuses on the Tuberin/Cyclin B1 complex in relation to G2/M arrest and DNA damage repair. In this study, we will overexpress Tuberin-WT and Tuberin clinical mutants in NIH-3T3 (mouse) and U2OS (human) p53 wild type cells. Etoposide, a topoisomerase II drug, will be used to induce DNA damage. Cells will then be analyzed by flow cytometry, TUNEL assay, and western blot to assess their cell cycle profile, apoptotic levels, and protein expression. Using CRISPR-Cas9 technology, a NIH-3T3 null TSC2 cell line will be created to clarify the role of Tuberin during DNA repair. Preliminary results have determined that 4μM of etoposide treatment at 8 hours arrests 50% of NIH-3T3 cells at G2/M. This project will provide greater insight into DNA damage induced carcinogenesis, TSC, and other proliferative diseases.

Availability

March 30th 12pm-3pm, April 1st 2-3pm

Share

COinS
 

The Role of Tuberin in DNA Damage Repair During Cell Proliferation

The cell cycle contains DNA damage checkpoints that delay mitotic progression and allow for DNA repair before cell division. DNA damage can be caused by radiation, drugs, and other processes which lead to cellular mutations and carcinogenesis. The tumour suppressor protein p53 is activated in the presence of DNA damage. It induces apoptosis or cell cycle arrest which allows cells to repair themselves. Tuberin (TSC2), another tumour suppressor protein, regulates the G2/M transition in the cell cycle and negatively regulates protein synthesis and cell growth. Mutations in tuberin can lead to the multisystem autosomal dominant disease known as tuberous sclerosis (TSC).

Previously, our lab has shown that Tuberin regulates mitotic onset through cellular localization of the G2/M Cyclin, Cyclin B1. My project focuses on the Tuberin/Cyclin B1 complex in relation to G2/M arrest and DNA damage repair. In this study, we will overexpress Tuberin-WT and Tuberin clinical mutants in NIH-3T3 (mouse) and U2OS (human) p53 wild type cells. Etoposide, a topoisomerase II drug, will be used to induce DNA damage. Cells will then be analyzed by flow cytometry, TUNEL assay, and western blot to assess their cell cycle profile, apoptotic levels, and protein expression. Using CRISPR-Cas9 technology, a NIH-3T3 null TSC2 cell line will be created to clarify the role of Tuberin during DNA repair. Preliminary results have determined that 4μM of etoposide treatment at 8 hours arrests 50% of NIH-3T3 cells at G2/M. This project will provide greater insight into DNA damage induced carcinogenesis, TSC, and other proliferative diseases.