Location

Windsor, Ontario

Start Date

23-6-2022 12:00 AM

End Date

24-6-2022 12:00 AM

Description

Because of rising pollutant emissions, potential global warming results, and rising energy demands, environmentally friendly and renewable building insulation materials are increasing in popularity. The changes in fossil-based energy resource prices, climate variation, and ecological menaces have resulted in important requisitions for bio-sourced and renewable materials, with building products accounting for an important volume. The building sector has important social, environmental, and financial effects. C-footprint of 15 insulating materials was investigated to compare the ecological efficiency of a building over its entire lifecycle. The values calculated were crosschecked with the thermal insulation’s real impact. The benchmark was made with the ecological effect evaluation rating by accounting for each material’s density and also variances in thermal conductivity degree. This research characterizes how to choose the most environment-friendly construction insulating material from the present alternatives based on a series of qualitative and quantitative parameters. It is suggested that the analytic hierarchy process be used to evaluate options and select the best option. The article presents the findings of a search for the most environmentally friendly bio-sourced thermal insulating material for buildings.

Included in

Engineering Commons

COinS
 
Jun 23rd, 12:00 AM Jun 24th, 12:00 AM

Investigating the ecological efficiency of widely utilized bio-sourced insulation materials in the building lifecycle

Windsor, Ontario

Because of rising pollutant emissions, potential global warming results, and rising energy demands, environmentally friendly and renewable building insulation materials are increasing in popularity. The changes in fossil-based energy resource prices, climate variation, and ecological menaces have resulted in important requisitions for bio-sourced and renewable materials, with building products accounting for an important volume. The building sector has important social, environmental, and financial effects. C-footprint of 15 insulating materials was investigated to compare the ecological efficiency of a building over its entire lifecycle. The values calculated were crosschecked with the thermal insulation’s real impact. The benchmark was made with the ecological effect evaluation rating by accounting for each material’s density and also variances in thermal conductivity degree. This research characterizes how to choose the most environment-friendly construction insulating material from the present alternatives based on a series of qualitative and quantitative parameters. It is suggested that the analytic hierarchy process be used to evaluate options and select the best option. The article presents the findings of a search for the most environmentally friendly bio-sourced thermal insulating material for buildings.